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Abstract— We discuss the architecture and software engineer-
ing principles of the Robotics Library (RL). Driven by require-
ments of robot systems, research projects, industrial applica-
tions, and education, we identify relevant design requirements
and present an approach to manage hardware and real-time,
provide a user-friendly, object-oriented interface to powerful
kinematics and dynamics calculations, and support various
platforms. After over ten years of development that started
in 2004 and evaluating many variants of the architecture, we
discuss the design choices for the components of the library in
its current version.

I. INTRODUCTION

Developing software to control intelligent robots is chal-
lenging in multiple ways: Robot setups typically involve
wildly different pieces of hardware running on different
platforms, some of them with hard real-time communica-
tion. Today’s motion planning algorithms and rigid-body
dynamics calculations are highly non-trivial, require efficient
implementations, but should be easy to use for the average
programmer. In short, designing a programming library for
robotics is a difficult undertaking. Some complexity can be
hidden by modern object-oriented programming concepts.
Other more conflicting design goals can only be achieved
by careful trade-offs. For this reason, even though there
are many existing robotics frameworks following different
choices [1], [2], [3], [4], we present a pure C++ library ap-
proach covering the whole range from hardware abstraction
to motion planning, named Robotics Library (RL).

A. Design Principles

To help position our work among the many existing
frameworks, we first discuss the main design principles
applied throughout the library, some of which show notable
differences to related approaches.

a) Pure library with a single API: Interfaces are con-
sistent throughout the components of the library, and all
classes inherit from defined base classes. Contrary to many
other robotics frameworks, RL is not a middleware and it is
independent from any distributed communication approach
that may be used.

b) Consistent and complete implementation: All impor-
tant algorithms in the main robotics field, including kinemat-
ics, dynamics, trajectory generation, and path planning, are
available and use identical notation and interfaces. Robot
kinematics and dynamics support generic joint types in
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Fig. 1: Overview of the Robotics Library’s packages and
their interdependencies.

a tree structure and are implemented using spatial vector
algebra [5]. Sensor and robot hardware drivers, as well as
various types of motion planning algorithms, are unified in
a class hierarchy (Section II).

c) Library reuse: Well-designed libraries from related
fields, such as collision detection or visualization, are made
available through wrappers. Especially in collision detection,
several high-quality libraries already exist with different
compromises in performance, precision, and advanced func-
tionality (such as distance queries or raycasts). RL provides
access to them under a common scene graph data structure
and encapsulates their functions in an abstraction layer
(Section II-E).

d) Platform independence: The pure ISO C++ im-
plementation using cross-platform libraries compiles on a
wide range of systems, ranging from an embedded QNX,
a Debian-based Raspberry Pi, to a PC running Windows.

Apart from these software design principles, it is worth
noting that RL is open source1 and licensed under a per-
missive 2-clause BSD license. It is therefore free for non-
commercial and commercial applications. Open source en-
ables debugging the whole software stack from user inter-
faces down to real-time hardware control. A short summary
of an early version of the Robotics Library is given in [6].

B. Related Work

The Robot Operating System (ROS) is probably the most
active middleware and software framework in robotics re-
search, indicated by frequent commits, an active mailing list,
and citations [1]. ROS is mostly motivated by the integration
of service robot systems and has a strong emphasis on a peer-
to-peer topology between many processes (called nodes) and
a large common set of tools for software integration (such

1https://www.roboticslibrary.org/ (paper describes v0.7)
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as build system, data and topology visualization, plotting,
or documentation). In the early days, the design of ROS
was mainly guided by the PR2 mobile manipulator [7].
While this design gained great popularity and was suc-
cessfully adapted to a much wider range of humanoids,
mobile robots, and aerial vehicles, some specifications that
were not covered in the original design—especially real-time
requirements—are hard to add to the existing middleware
concept. For this reason, developers currently discuss plans
to support embedded platforms and real-time in a different
API version [7]. Core functionality inside nodes relies on a
number of existing frameworks such as Orocos’ kinematics
library [8]. In contrast to the ROS collection of packages,
RL is a homogeneous library with full real-time support.

Among the earliest approaches to object-oriented path
planning software is the Components for Path Planning
library [9], which has been refactored to a component
framework [10], but is no longer maintained. For real-time
robot control, object-oriented, model-based designs [11] and
component-based frameworks [4] were presented. Later, the
OpenRAVE architecture was proposed [12], which is geared
toward autonomous robot motion planning and control. In
contrast to OpenRAVE, RL implements robot and sensor
drivers. More recently, RobWork [13] was presented, which
likewise provides simulation and control features, as well
as an extensible graphical user interface. Compared to the
RobWork library, RL offers real-time support. For collision-
free path planning, the Open Motion Planning Library [3]
provides a large collection of state-of-the-art algorithms,
but no means for executing these paths on physical robots.
Further related are robot simulation frameworks, such as
Gazebo [14], V-REP [15], and Webots [16].

II. APPROACH

In this section, we discuss the software design princi-
ples of the library and its components. The package ar-
chitecture (Fig. 1) comprises several domain-independent
mathematics and generic features together with robotics-
specific packages, where high-level packages depend on
more basic ones. Our discussion roughly follows the package
architecture from bottom to top.

A. Numerical Library

A well-designed numerical mathematics library has great
influence on all other parts of a robotics library. Almost all
robotics-specific algorithms in kinematics, dynamics, path
planning, trajectory generation, and collision avoidance need
efficient vector and matrix operations as well as numerically
stable calculations of advanced matrix and eigenvalue de-
compositions. Choosing powerful, numerically stable, and
efficient numerical routines therefore has a great impact on
the overall performance of the whole library. Apart from
efficiency, other requirements of the API are readability, user-
friendliness, and consistency.

Through the version history of the Robotics Library,
we had four mathematical branches in total, which finally
converged into the current implementation using Eigen [17].

Eigen offers fast and readable code through the use of
expression templates and explicit vectorization (e.g., SSE4,
AVX512). RL makes a number of extensions to the native
Eigen types and adds additional features, especially to the
quaternion implementation. These features include power
and exponential functions of quaternion types, as well as
conversion to angular velocity and acceleration. For smooth
interpolation of robot rotations, RL implements the slerp
function and its derivative as defined by [18]. When tan-
gency conditions are given for a rotation interpolation, the
squad function can satisfy a smooth interpolation with valid
quaternions. RL implements the squad function and the cubic
quaternion interpolation as defined by [19].

B. Mathematical Functions

Many types of geometric computation are used frequently
in robotics applications, ranging from basic 3D transforma-
tions, various types of rotations, to trajectory interpolation
and spatial vector calculations. In order to have a clear
separation of concerns, we implement generic geometric
functions that are independent from a robot’s kinematic or
dynamic model in the mathematics component, which is kept
free from any software dependencies.

The Robotics Library makes two important choices that
characterize the design of its mathematics components: First,
trajectory generation takes a strongly algebraic approach
where trajectories are represented as piecewise algebraic
functions, allowing exact interpolation and differentiation.
Second, all rigid-body dynamics functions are formulated
in terms of spatial vectors, which allow particularly concise
formulation and highly efficient computation.

1) Algebraic function formulation: It is a major challenge
in trajectory generation to avoid discontinuities in position,
velocity, and acceleration. Only smooth trajectories with con-
tinuous derivatives enable safe, fast, and precise robot mo-
tion. However, when defining a path in the operational space
or switching between joint space or operational motion,
robotics frameworks commonly resort to simple sampling,
filtering, or approximation by low-level polynomials.

+ operator(x: Real) : T
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Fig. 2: Class hierarchy of mathematical functions. A Func-
tion is a vector-valued mapping that can be evaluated effi-
ciently and stably, including its derivatives (only part of the
definition and methods are shown).
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RL avoids this approximation and offers a framework
for constructing piecewise, vector-valued algebraic functions,
allowing to represent all types of trajectories on an al-
gebraic level. As shown in Fig. 2, the abstract Function
class defines a mapping from a real value (usually time)
to a vector (usually, but not limited to a joint space or
operational space configuration), whose values and derivative
values can be evaluated efficiently. Concrete classes are
implemented for all basic types of motion: Polynomials for
joint and operational space positions, quaternion polynomials
for rotation and operational space orientations, and motion
along circular segments. Piecewise functions and splines
(piecewise polynomials) are organized in the shape of a
composite pattern, allowing the construction of complex
trajectories both in joint space and in operational space.
The benefit of this approach is twofold: First, continuity
and smoothness can be guaranteed and verified exactly and
for multiple orders of derivatives, including acceleration
and jerk. Second, trajectories are formulated on a semantic,
abstract level, on the same level as a typical computer aided
design environment, allowing easy integration with advanced
robot programming user interfaces.

In the mathematics component, the Function classes offer
generic implementations that do not require any kinematic
model. In particular, static functions are available for con-
structing algebraic functions for given boundary conditions,
including higher-order (quaternion) spline interpolation and
motion along circular segments. When such a function is to
be run as a trajectory for a particular robot, the kinematics
package in Section II-D will solve the inverse kinematics
mapping for trajectories in operational space, check for kine-
matic limits, and allow execution by evaluating the piecewise
trajectory function with respect to the robot’s control cycle.

2) Spatial vector formulation: Rigid-body dynamics have
been implemented by many robotics frameworks [3], [11],
[4], [8]. However, RL chooses a different formulation from
these and uses spatial vector algebra, as proposed by Feath-
erstone [5], [20]. A spatial vector is defined as a six-
dimensional vector that may either be a motion vector
representing a velocity or acceleration, or a force vector
representing momentum or impulse. Spatial vectors are not
part of Euclidean space, with the dot product being defined
only between a motion and a force vector. In this notation, a
spatial transformation can be expressed as a 6-by-6 matrix.
While dynamics algorithms appear rather convoluted when
written using 4-by-4 transformation matrices, spatial vectors
enable a very concise formulation of the recursive Newton-

Euler algorithm in a single formula for all types of joints.
The n degrees of freedom of a joint are defined by a 6-by-n
matrix for all general types of joints [20, p. 78f], including
revolute, prismatic, spherical, and helical joints.

Besides brevity in notation and high generality for all
joint types, the spatial vector implementation has the impor-
tant benefit of higher computational efficiency. Featherstone
shows [20, pp. 201–204] that this implementation minimizes
the number of floating point operations for forward and
inverse dynamics computation for kinematic chains.

C. Hardware Abstraction Layer

Support for controlling various types of hardware devices
is a major feature of a robotics framework. Today, robot
setups rely on several types of sensors, including cameras,
range sensors, or force-torque sensors. On the actuator side,
industrial robots and grippers use a wide range of different
protocols, including various fieldbuses and custom Ethernet
protocols. Open-source driver implementations are rather
scarce. In many cases, precise protocol documentations are
not part of the manual and not open to the public.

1) Hierarchical hardware driver implementation: Hard-
ware devices lend themselves well for an object-oriented,
hierarchical implementation. While devices of similar types,
such as actuators, force-torque sensors, grippers, or cameras,
share a common set of basic features, individual devices may
provide additional features specific to a certain manufac-
turer [6, pp. 104f]. These common interfaces are organized as
a class hierarchy in an object-oriented hardware abstraction
layer as shown in Fig. 3.

For devices with an extremely diverse and fine-grained
feature set, structuring them into multiple layers is always
an option. For instance, a humanoid can be modeled as a
device with flat access to all position-controlled joints, but
may also be designed as a class with access to individual
arms, legs, etc. A robot manipulator can provide an interface
for position control, but also give access to single motors
with interfaces including access to individual components
and their temperature readings and control values.

On top of the hierarchy is the abstract Device class, defin-
ing methods common to all devices: Opening and closing
the connection to the hardware device, starting and stopping
operations, as well as the step method, which performs all
communication to and from the device.

Contrary to other robotics frameworks, which choose
to encapsulate the communication with a hardware device
completely and implement asynchronous function calls and
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Fig. 4: States of (a) Device and (b) CyclicDevice. The latter
exchanges all messages to and from the device in the step
function, which needs to be called in a real-time loop.

callbacks on data reception, RL chooses to avoid any type
of hidden concurrency. Concerning the hardware component,
it is an important design choice of the library not to create
threads or processes (apart from the actual real-time thread
abstraction class meant for this purpose). Concurrent behav-
ior is a critical aspect in interfacing hardware with real-
time constraints and should therefore be in the hand of the
programmer. On the contrary, RL requires the application
to call the step method of the device periodically within its
control cycle.

The states and state transitions of a device object are
shown in Fig. 4. Communication to a newly constructed
device is initiated by the open method call. For real-time
devices, successive step method calls are necessary within
real-time constraints. Its operations begin after a start method
call and end with stop. Importantly, all communication with
the device is performed by this method and is buffered in
the object. The programmer accesses cached sensor data or
actuator target positions through getter and setter methods.

This hardware interface design allows all types of
thread implementations, including platform-specific real-time
threads. However, the design expects the programmer to
actively choose how real-time method calls are guaranteed
and does not hide this important choice. A programmer can
design his application as a single process with one thread or
individual threads of different cycle times for each hardware
device. He can also choose to have one process for each
device together with a shared memory communication based
on his favorite API. To balance computational load, the
programmer can move devices and processes performing
heavy calculation to a separate computer and use basic
TCP/UDP communication, a fieldbus, or one of the many
available middlewares.

2) Operating system abstraction: Before the introduction
of the new C++-11 standard with interfaces for threads,
mutual exclusion, condition variables, clocks, and asyn-
chronous programming, RL provided abstract thread, mutex,
semaphore, and timer classes for common pthread, Windows,
RTAI, and Xenomai implementations. In the latest version,
RL is built on top of the C++-11 standard, but provides
extensions for setting process and thread priorities, as well
as a standard-compatible interface for RTAI and Xenomai’s
native interface.

RTAI and Xenomai are open-source kernel extensions
to Linux and handle real-time scheduling [21]. With both
originating from the same project, RTAI behaves differently
in that it intercepts interrupt notifications directly and avoids
some interrupt handling overhead [21]. Some native real-
time operating systems such as QNX offer regular POSIX
threads through the pthread interface. All of these real-time
frameworks are fast and reliable enough for all implemented
devices, with TCP round-trip delays well below 100 µs, as
measured by [21]. With this abstract thread class, program-
mers can develop applications that compile on multiple real-
time operating systems or real-time kernel extensions.

D. Kinematics and Dynamics

Modeling the kinematic structure is an integral part of
controlling a robot system. Together with the robot’s dynamic
properties, this includes the calculation of link frames based
on joint values, the Jacobian matrix and its derivative, as well
as mass matrix, Coriolis vector, and gravity compensation.

Common algorithms include the recursive Newton-Euler
algorithm for inverse dynamics and the Articulated-Body al-
gorithm for forward dynamics. Classical Denavit-Hartenberg
notation is used to describe systems with a number of
revolute and prismatic joints that move the robot’s links.
Different formulas are required for each joint type in order
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Fig. 5: Kinematics and dynamics of a double pendulum.
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Fig. 6: Overview of classes for kinematics and dynamics representation (only class members relevant for Newton-Euler
algorithm are shown). Bodies and joints in a tree-like structure represent a model and its current state.

to describe these algorithms. Object-oriented modeling of
multibody systems [22], [11] can be used to model joints and
other transformation components as objects that influence
elements such as frames, velocities, accelerations, or forces.

By combining these two approaches, spatial vector alge-
bra [20] can be used to model joint types such as helical,
cylindrical, planar, spherical, or 6-DOF joints with a single
notation. Algorithms are modeled in a way that these trans-
formation objects modify corresponding input and output
values. Joints and fixed transformations between bodies
can be seen as edges in a graph, while bodies, the world
reference, and intermediate frames represent vertices in this
graph (Fig. 5).

As an example, the recursive Newton-Euler algorithm uses
two iterations: (i) Forward propagation of velocities and
accelerations, (ii) back propagation of forces. In the object-
oriented implementation, this is represented by two functions
inverseDynamics1() and inverseDynamics2() implemented
differently for each object (Fig. 6). The first iteration cal-
culates current velocities v⃗ and accelerations a⃗ in the body
frames based on joint velocities q̇ and accelerations q̈. It then
determines the net forces f⃗Bi in body coordinates generated
by these accelerations and a body’s rigid body inertia I⃗ .
Plücker transforms X define the spatial transformation from
frame i − 1 to i. The directions of free motion of a joint
are modeled by a matrix S and its derivative Ṡ. The second
iteration/function propagates the forces f⃗ generated by the
individual links from the frame at the end effector back to
the base and maps them to the torques �i in the individual
joints of the robot system.

Other recursive algorithms such as the Articulated-Body
algorithm for forward dynamics are modeled in a similar
fashion. In order to calculate the Jacobian or mass matrix
for a given state, multiple queries to these algorithms can
be used to create a full representation of a state. Tree-like
structures are easily supported.

In combination with the muscle Jacobian, [23] shows an
application of this part of RL for tendon-driven robots.

E. Scene Graph Abstraction

Geometry data is necessary for 3D visualization (Fig. 8),
collision checking, distance computation, and raycasting.
While geometry is often modeled as a boundary repre-
sentation (B-rep) in CAD programs, visualization and the
listed queries typically require a polygon representation.
For exchange of polygon data, the Robotics Library uses

VRML (Virtual Reality Modeling Language), a common
format supported by many CAD programs and 3D editors.
Together with triangle meshes it offers support for basic
primitives such as boxes, spheres, cylinders, and cones that
can be utilized in collision detection engines. Named nodes
can be used to reference individual robot models and their
respective moving bodies.

A scene representation consists of a number of moving
bodies that can be grouped into models to map to robots
and obstacles (Fig. 7). In the scene graph, the bodies are not
arranged in a tree-like structure. Instead, bodies are located
in the world frame to support all kinds of connections to
kinematics and dynamics models, physics simulations, and
sensor input. In physics engines, bodies are connected by
constraints such as joints or springs that can be removed
or may break during interaction. Each body consist of a
number of geometric shapes with static transformations. In
order to update a robot’s geometry model given a joint
configuration, the individual frames are calculated by the
robot’s corresponding kinematic representation.

File import and 3D visualization is implemented using
the Open Inventor API, an object-oriented scene graph
implementation. VRML is supported with excellent loading
performance, as it is an extension to the native Inventor file
format. In order to group bodies into models, an additional
scene description file specifies the names of individual mod-
els and bodies in the VRML file. Separate VRML files can
be used for visualization and collision detection in order to
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Fig. 7: Class overview of the scene graph abstraction with
supported collision checking libraries.



Fig. 8: RL supports visualization and kinematics of a wide range of robots. It can support a combination of various joint
types, common tree-like kinematics such as dual-arm manipulators, as well as manipulators on top of holonomic platforms.

model primitive shapes such as boxes, spheres, or convex
hulls for improved performance [24].

In order to compare different collision engines, the API de-
fines interfaces for simple collision/distance/raycast queries
and penetration depth computation. Features include queries
between shapes, bodies, models, or the whole scene.

A branch of the Robotics Library explored replacing
VRML with COLLADA, as this offers a description for a
visual (detailed graphics) and a physics (collision shapes and
dynamic properties) scene in a single file. COLLADA 1.5.0
even offers support for B-rep geometry descriptions. The
support for exporting geometry files in this format is however
still limited in current 3D software programs. While visual
scenes in version format 1.4.0 can be exported in some
programs, support for modeling and exporting physics scenes
is still very poor. In addition, the official COLLADA DOM
API only provides a basic C++ object representation of the
COLLADA XML schema and leaves the majority of the
work up to the user. This branch of RL was used in [25]
to simulate a tendon-driven robot.

F. Path Planning

Finding a collision-free path from one robot configuration
to another is a common task in robotics. Various planning al-
gorithms have been developed over the years, with sampling-
based approaches such as Probabilistic Roadmaps (PRM) and
Rapidly-Exploring Random Trees (RRT) and their variations.
A comparison of various planning algorithms and their
performance using RL can be found in [26].

Path planning requires a kinematic representation of the
robot together with a geometric model and an engine for
collision detection (Fig. 9). In order to determine if a state is
colliding, the kinematics map an n-dimensional joint config-
uration to frames for the geometry in the three-dimensional
workspace and the collision engine computes the result.

The kinematics also define a metric space as a combination
of the manifolds of its individual joints. A prismatic or
revolute joint with upper and lower bounds is represented
by ℝ1, a revolute joint with no limits however by S1.
Spherical joints represent the real projective space ℝℙ3
and the correct manifold for free-flying objects is given
by ℝ3 ×ℝℙ3. These metrics have to be considered when

calculating a global distance function and when interpolating
between configurations.

Apart from the complexity of the geometry and the per-
formance of the collision engine, nearest neighbor calcula-
tion is the most expensive operation in a lot of planning
algorithms. Linear search becomes increasingly expensive
with the numbers of vertices in a tree or graph. Structures
such as k-dimensional tree only scale to kinematics with
approximately 20 DOF and require special adjustments for
metrics other than Euclidean [27]. With similar restrictions
regarding the number of DOF, Geometric Near-Neighbor
Access Trees (GNAT) only require a global distance function
and are an alternative for other metrics [28]. Paralleliza-
tion (OpenMP) can be used to some extent to improve the
performance of these expensive queries.

Sampling-based planners rely on a proper pseudoran-
dom number generator [29]. Apart from uniform sampling,
various other sampling techniques have been introduced—
especially for PRM-like planners—and can be chosen for
such an algorithm. Similarly, different strategies are available
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Fig. 9: Excerpt of classes relevant to path planning, with
models for collision detection and kinematics calculation, as
well as data structures for nearest neighbor calculation.



Fig. 10: rlCoachMdl included in RL for visualization of
forward and inverse kinematics. It provides a TCP port for
remote update of joint configurations and body/shape frames.

for quick verification of graph edges. After a solution path
was generated, the user can select among a number of
optimization approaches to minimize path length.

III. APPLICATIONS

The development of RL is mainly driven by the require-
ments of research and industrial projects. The following
sections present a small selection of previous use cases.
Videos of example applications can be found online2.

A. Basic Visualization of Kinematics and Geometry

One of the simplest demo programs included in the open-
source release for combining kinematics and geometry in
a basic robot visualization is shown in Fig. 10. It uses the
Qt framework to provide a simple GUI where the user can
experiment with forward and inverse kinematics.

The program can load a scene definition specified in
the XML format of Section II-E together with multiple
XML kinematics definitions for the robots included in the
scene. It will then create a corresponding rl::sg::Scene
for visualization and rl::mdl::Kinematic models for
kinematics. After a change of joint positions it performs
forward kinematics to update the corresponding link frames
and will use these for updating the matching bodies in the
geometric scene.

The demo application also provides an open TCP socket
that can be used to update robot configurations and individual
body/shape matrices. The hardware abstraction part of RL
includes a corresponding joint position actuator and sensor
for visualizing motions before execution on actual hardware.

B. Basic Path Planning Application

For testing motion planning algorithms and comparing
their performance, the demo program shown in Fig. 11 can
be used. It can load an XML scenario definition defining a
path planning algorithm and its parameters, together with a
kinematic model and scenes for visualization and collision
checking. The Qt application uses a design based on the one

2https://www.youtube.com/roboticslibrary

Fig. 11: rlPlanDemo is a demo for evaluation of different
path planners and visualization of their results. It supports
different collision engines and can load XML scenarios.

shown in Fig. 9 of Section II-F and adds additional features
such as a visualization of the configuration space and an
approximation of the swept volume of a solution path. The
collision engine used in the running program can be switched
and specified as an optional command-line parameter to the
application.

C. Distributed Real-Time Task-Based Control

In the human-robot cooperation system shown in Fig. 13,
collisions are avoided by distance sensing and online control
in the nullspace of manipulation tasks. The tracking of
the worker’s motion was performed using a commercial
optical tracking system that was delivered with an SDK
running on Windows. The real-time control of the robot
was implemented in a single process on a real-time Linux
system (Fig. 12).

The task controller developed in [30] uses a
rl::sg::solid::Scene instance to calculate the
minimum distances between obstacles in the environment
and the moving bodies of the worker. The nullspace
calculations are based on a rl::mdl::Kinematic
model of the robot and add a task-based control structure
on top of this. The joint positions of the Mitsubishi
RV-6SL robot are accessed and updated in 7.11ms over an

«device» PC 1

«os» Windows

«device» PC 2

«os» Real-Time Linux

«device»
Mitsubishi RV-6SL

«device»
Tracking System

ZeroC Ice

USB

Task Controller

rl::sg::solid::Scene Task Composition

rl::hal::MitsubishiH7

Optical Tracker

TCP/IP

rl::mdl::Kinematic

Fig. 12: Overview of the setup for the human-robot coop-
eration application with the optical tracking system running
on a separate system than the real-time control of the robot.
ZeroC Ice was chosen as the middleware for this use case.

https://www.youtube.com/roboticslibrary


Fig. 13: Human-robot cooperation scenario with collision
avoidance via an optical tracking system. Different task
priorities such as keeping the orientation of the box and
tracking the worker’s hand are observed.

implementation of the robot’s custom real-time interface
via rl::hal::MitsubishiH7. For testing purposes, it
can be easily replaced with rl::hal::Coach to use the
visualization shown in Fig. 10.

For the communication between the two processes in this
use case, remote procedure calls provided by the cross-
platform middleware ZeroC Ice were used. The optical
tracker on the first PC sends updates of the trackers on the
worker’s body to the scene graph on the second PC. The
choice of the communication channel between the two PCs
is up to the decision of the programmer based on the use
case requirements.

IV. CONCLUSION AND FUTURE WORK

After over ten years of development, we have designed
a software architecture for robotics suitable for a wide
range of applications. In contrast to related work, we follow
a platform-independent and pure library approach, which
fulfills several design properties relevant to robotics, such
as real-time control, feature-rich geometric algorithms, and
powerful robot kinematics. In the future, we plan to integrate
our work in the area of constraint-based task program-
ming [31] and to develop a user-friendly API for it.
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